Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates.

نویسندگان

  • Yevgeniy B Sirotin
  • Elizabeth M C Hillman
  • Clemence Bordier
  • Aniruddha Das
چکیده

In functional brain imaging there is controversy over which hemodynamic signal best represents neural activity. Intrinsic signal optical imaging (ISOI) suggests that the best signal is the early darkening observed at wavelengths absorbed preferentially by deoxyhemoglobin (HbR). It is assumed that this darkening or "initial dip" reports local conversion of oxyhemoglobin (HbO) to HbR, i.e., oxygen consumption caused by local neural activity, thus giving the most specific measure of such activity. The blood volume signal, by contrast, is believed to be more delayed and less specific. Here, we used multiwavelength ISOI to simultaneously map oxygenation and blood volume [i.e., total hemoglobin (HbT)] in primary visual cortex (V1) of the alert macaque. We found that the hemodynamic "point spread," i.e., impulse response to a minimal visual stimulus, was as rapid and retinotopically specific when imaged by using blood volume as when using the initial dip. Quantitative separation of the imaged signal into HbR, HbO, and HbT showed, moreover, that the initial dip was dominated by a fast local increase in HbT, with no increase in HbR. We found only a delayed HbR decrease that was broader in retinotopic spread than HbO or HbT. Further, we show that the multiphasic time course of typical ISOI signals and the strength of the initial dip may reflect the temporal interplay of monophasic HbO, HbR, and HbT signals. Characterizing the hemodynamic response is important for understanding neurovascular coupling and elucidating the physiological basis of imaging techniques such as fMRI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Relationship between Flavoprotein Fluorescence and the Hemodynamic Response in the Primary Visual Cortex of Alert Macaque Monkeys

Flavoprotein fluorescence imaging (FFI) is a novel intrinsic optical signal that is steadily gaining ground as a valuable imaging tool in neuroscience research due to its closer relationship with local metabolism relative to the more commonly used hemodynamic signals. We have developed a technique for FFI imaging in the primary visual cortex (V1) of alert monkeys. Due to the nature of neurovasc...

متن کامل

Spatiotemporal Variations of Total Cloud Cover and Cloud Optical Thickness in Iran

A knowledge of cloud properties and spatiotemporal variations of clouds is especially crucial to understand the radiative forcing of climate. This research aims to study cloudiness in Iran using the most recent satellite data, powerful databases, and regional and seasonal analyses. In this study, three data series were used for the spatiotemporal variations of cloudiness in the country: A) Clou...

متن کامل

High-speed vascular dynamics of the hemodynamic response

While a range of cellular mechanisms have been proposed to underlie control of neurovascular coupling, a comprehensive, reconciliatory model has yet to be determined. To fit with such a model, it is essential that candidate mechanisms exhibit reaction times, spatial ranges, and speeds of propagation that are consistent with the vascular manifestations of the 'hemodynamic response'. Understandin...

متن کامل

Comparison of Spatiotemporal Parameters and Vertical Ground Reaction Force in the Stance Phase of Gait Among Ankle Sprain Coper and Healthy Athletes

Purpose: It is essential to maintain dynamic stability during walking to perform daily tasks independently. The present study aimed at comparing the spatiotemporal parameters and the values of the vertical ground reaction force (vGRF) as well as determining the time to reach them in ankle-sprain coper and healthy athletes during the stance phase of gait. Methods: A total of 28 female universit...

متن کامل

Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity.

Accurate interpretation of functional MRI (fMRI) signals requires knowledge of the relationship between the hemodynamic response and the neuronal activity that underlies it. Here we address the question of coupling between pre- and postsynaptic neuronal activity and the hemodynamic response in rodent somatosensory (Barrel) cortex in response to single-whisker deflection. Using full-field multiw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 43  شماره 

صفحات  -

تاریخ انتشار 2009